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A Review of Duration and 
Convexity Principles

• To Compute Duration:  
– First, write the bond pricing equation

– Second, take the derivative with respect to yield: this 
is the approximate dollar price change for a small 
change in yield!

– Third, collect terms

– Fourth, divide both sides by P:  this is the 
approximate %-age price change for a small change 
in yield!

– This is the (negative of) modified duration!
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To Illustrate, Look at the 9% 
25-Year Bond (we’ll 

exaggerate the curve):

Yield

Price
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“Macaulay Duration”
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• We end up with:

dP

d
YTM P YTM

Macaulay Duration
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   ( )Modified Duration

What is modified duration?

• It is the (negative) of:
– “the approximate %-age change in price (rate-

of-return) for a small change in yield”
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Durations are quoted in YEARS!

• So, the last step is to divide by the number of 
periods per year (usually 2 in bond markets):

Duration in years =

(Duration in periods) / (# periods per year)

Example:

Bond

M acaulay
Duration
(years)

M odified
Duration
(years)

9% /5-year    4.13    3.96

9% /25-year  10.33    9.88

6% /5-year    4.35    4.16

6% /25-year  11.10  10.62

0% /5-year    5.00    4.78

0% /25-year  25.00  23.92
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Properties of Duration

• The duration of any coupon bond is less than 
its maturity (both modified and Macaulay 
duration)

• Macaulay duration of a zero equals its 
maturity

• Modified duration of a zero < maturity

• Lower coupon bonds (all else held constant) 
have longer duration (both modified and 
Macaulay)

• Finally, the lower the yield (with constant 
coupon and maturity), the higher the 
duration:
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A 9% coupon/25-year bond:

Y ield  (% /yr)
M o d ified
D u ration  (years)

    7     1 1 .21

    8     1 0 .53

  1 1       8 .70

  1 3       7 .66

  1 4       7 .21

• Bottom line: the factors that increase bond price 
volatility also increase duration!

– Therefore, the greater the duration, the 
greater the bond price volatility
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Uses of Modified Duration

• Approximating the %-age price change 
(rate-of-return) due to a change in yield:

dP
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Modified Duration
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Example: A 25-yr, 6% bond 
yielding 9%

• Modified duration = 10.62 years

• What is the approximate %-age price 
change with a 10 bp change in yield (i.e., 
from 9.0 to 9.1%/yr)?

• Solution:

dP

P
      ( . ) (. ) . . %10 62 0010 01062 1062 
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How good is this 
approximation?

• Actual price at a yield of 9.1 is -1.05 % 
(you have to actually calculate the price at 
9.1 to figure this out)

• So, the estimate (-1.06 %) is close to the 
actual (-1.05 %) 

• The estimated %-age price change using 
duration is close when yield shifts are 
small 

Try a change of 200 bp:

• Modified duration = 10.62 years

• What is the approximate %-age price 
change with a 200 bp change in yield (i.e., 
from 9.0 to 11.0 %/yr)?

• Solution:

dP

P
      ( . ) (. ) . . %10 62 0200 2124 2124 
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• However, actual change is -18.03 %, 
compared to our estimate of -21.24%

• So, using duration to estimate %-age price 
change causes large errors with large 
yield shifts

• Note:  Using duration to estimate the new 
price always underestimates the new 
price!

• Problem:  Duration always underestimates 
the new price after a big yield change

• The problem is worse for bonds having a 
lot of convexity

• Solution:  Include a convexity correction 
factor!
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Convexity

• You can think of this as the change in the 
modified duration with change in yield

Convexity
d P
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Convexity Properties

• P-1: As the yield of a given bond 
increases, the convexity decreases

• P-2: Lower coupon bonds (with same 
maturity and yield) have more convexity

• P-3: Longer-maturity bonds (with same 
coupon rate and yield) have more 
convexity
Last point: traders are willing to “pay for 
convexity,” since more convex bonds have a 
higher price whether yields rise or fall!
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Yield Curve Basics

• The Treasury yield curve is often modeled 
as moving with:
– Parallel shifts, plus
– Twists, plus
– Butterfly effects

• (Let’s look at dynamics of yield curve 
using Craig Holden’s spreadsheet)

• (See, also, page 52 of Colin “Fixed-
Income Attribution”)
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• These 3 effects are somewhat ambiguous:
– Example: Colin, Figure 6.2 (pages 53-54)
– Example: Twist at short end plus twist at long 

end of curve can equal parallel shift

• Must fix a twist maturity point to solve this 
problem
– Should be chosen according to the duration of 

each bond in the fixed-income portfolio (or, 
duration of manager’s mandate)

– Otherwise, attribution analysis will be 
misleading
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Polynomial Modeling 
of Yield Curve Dynamics

• Let y(m) = yield as a function of maturity

• S = twist point

• Then, 
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Approximating Fixed-Income Returns 
Using Yield, Duration and Convexity

• Let r = return on bond

• y = ytm

• MD = modified duration

• C = convexity

  
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Yield Return Decomposition

• Simple yield may be further decomposed 
into that of an equivalent maturity 
government bond + a yield spread

tcr

rrr

coupon

rolldowncouponyield




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Treasury Curve 
Shift Decomposition

• This duration yield may be further decomposed 
into the duration yield of the benchmark portfolio 
+ the difference in duration yield of the portfolio 
(minus the benchmark)—the “duration bet”—
both computed using shifts in gov’t yield curve

yMDr
shift
parallel 
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• Remaining return of the equivalent gov’t 
bond portfolio is called “yield curve 
repositioning effect”
– Captures twist and butterfly effects on gov’t 

yield curve
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Roll Return

• Freeze the gov’t yield curve

• “Roll return” is the return derived from the 
shortening of the maturity of the bond 
portfolio (upward-sloping yield curve 
implies positive roll return)
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Other Components

• Credit return

• Security selection return

• Optionality return

Survivorship and Selection 
Biases
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Effects of Survivor Bias

• Impacts estimate of performance of the 
“average fund”

• Impacts estimate of the persistence in 
performance

• Impacts estimate of the relation between 
performance and fund characteristics, e.g., 
fund size or expenses

November 7, 2010 34

Bias in Average Fund 
Performance

• Length of survival period affects the bias in 
average fund alphas
– For example, a database that contains only funds that 

survive over a 10-year period has greater bias than 
one that contains only funds that survive over a 5-
year period

• Survival rule of the market impacts the bias
– If funds die after one year of bad performance, this 

will impose a bigger survival bias for average fund 
performance than if funds die only after a 10-year 
poor performance period
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Bias in Performance 
Persistence

• Survival rule impacts the bias
– If funds die after short periods of poor 

performance, then only persistent winning 
funds live, making the bias in persistence 
stronger 

• This results in higher persistence in the survivor-
biased dataset

– If funds die after long periods of poor 
performance, then only persistent losing funds 
die. 

• This results in lower persistence in the survivor-
biased dataset
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Bias in the Relation Between 
Performance and Fund 

Characteristics

• The bias will only occur for a fund 
characteristic that is correlated with 
survival
– For instance, fund size, since small funds are 

more likely to die after poor performance

– This will make small funds appear to 
outperform large funds in the survivor-biased 
dataset
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Other Biases…

• Backfilling performance records
– Incubator funds (Evans, 2010, JF)

• Merged fund performance histories
– Funds may choose to use more successful 

fund’s history

• Hedge fund database inclusion biases
– Liquidated funds missing

– Super-successful funds missing

November 7, 2010 37

Bootstrapping Alphas

Kosowski, Timmermann, Wermers, and 
White (Journal of Finance, December 

2006)
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Trying to Understand Hedge 
Fund Risks…
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No Academic Studies Explicitly 
Model the Role of “Luck” in 

Performance
• Important to model the distribution of 

performance measures
– Theory:  difficult to derive the distribution 

in theory, as it depends on:
• Assumptions about timing vs. selectivity 

abilities of the fund manager
• Assumptions about structure of factor-

mimicking portfolio returns (e.g., the book-
to-market “factor”)

• Assumptions about the “tournaments” that 
might be played by managers as the 
performance “game” proceeds through time
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Our Paper Bootstraps the 
Distribution of Performance 

Measures for the Funds
• Since there is little agreement on the 

correct model to use for “risk-adjustment” 
or “style-adjustment,” we bootstrap the 
distribution of many widely used models

• Our main objective in this paper is to show 
that bootstrapped p-values can 
substantially change inferences about 
managerial abilities for several different 
models

November 7, 2010 42

Unconditional Performance Models
(Regressors are in Parentheses)

• Pure selectivity models

– Jensen Measure (RMRF)

– Fama-French Measure (RMRF, SMB, HML)

– Carhart Measure (RMRF, SMB, HML, 
PR1YR)

• Models of Timing and Selectivity
– Henriksson and Merton (RMRF+ = max(0,RMRF))

– Treynor and Mazuy (RMRF, RMRF2)
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Conditional β Models

• Conditional Jensen (RMRF, z1*RMRF, 
z2*RMRF, z3*RMRF, z4*RMRF, z5*RMRF)

• Conditional F-F (RMRF, z1*RMRF 
z1*SMB, z1*HML, etc.)

• Conditional Carhart
• Conditional Treynor-Mazuy
• Conditional Henriksson-Merton
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Conditional α and β Models

• Conditional Jensen (z1, z2, z3, z4, z5, 
RMRF, z1*RMRF, z2*RMRF, z3*RMRF, 
z4*RMRF, z5*RMRF)

• Conditional F-F (z1, z2, z3, z4, z5,RMRF, 
z1*RMRF z1*SMB, z1*HML, etc.)

• Conditional Carhart
• Conditional Treynor-Mazuy
• Conditional Henriksson-Merton
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The Hypothesis Test for
“Star” Fund Managers

• H0 : max αi <=  0  (i = 1,…,L)

• H1 : max αi >  0  (i = 1,…,L)

• The distribution function for these 
maximum α-statistics is bootstrapped

• Analogous tests for “goat” fund managers
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The Bootstrapping Procedure

• Step 1: Obtain “alpha” estimates, factor loadings, 
and residuals from the actual fund returns and factor 
portfolios

• Example: With the Carhart model,

– A. Regress:

Ri-Rf = α + β*RMRF + s*SMB + h*HML + p*PR1YR + ε

– B. Save estimated time-series residuals and 
regression coefficients, as well as estimated 
“alpha”
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• Step 2: Resample a full sequence of 
residuals, {εt}, one for each time-period, for 
fund i for b=1,…,B (draw “B” bootstrapped 
residuals with replacement)

• An extension: Resample both the 
residuals and the factor returns for RMRF, 
SMB, HML, and PR1YR
– Distribution of “alphas” is sensitive to this 

“case resampling” as well
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• Step 3: Generate the bootstrapped fund 
returns, assuming no performance for t=1,…,T, 
for bootstrap sample “b”:
Ri

b-Rf = 0 + β*RMRF + s*SMB + h*HML + p*PR1YR + 
εb



25

November 7, 2010 49

• Step 4: Estimate the alpha that results simply 
from sampling variation by:
Ri

b-Rf = αb + β*RMRF + s*SMB + h*HML +     
p*PR1YR + εb

• This 4-step procedure is repeated “B” times for 
each fund for the Carhart measure

• The maximum αb across all funds is saved for 
each bootstrap iteration, as well as the maximum 
t-stat for αb
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Summary

• New bootstrapping technique empirically 
determines distribution of performance 
“alphas”

• “Alphas” are non-normal
• Evidence of superior managers—alphas that 

are higher than we would expect from 
sampling variation

• Also, evidence of inferior managers—alphas 
that are lower than we would expect from 
sampling variation


