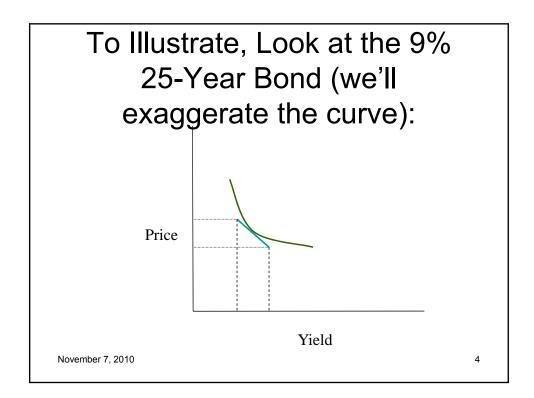
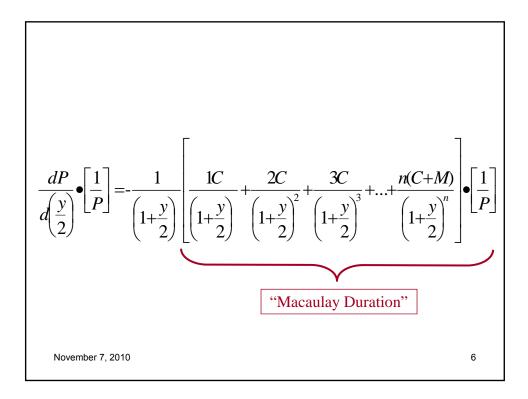


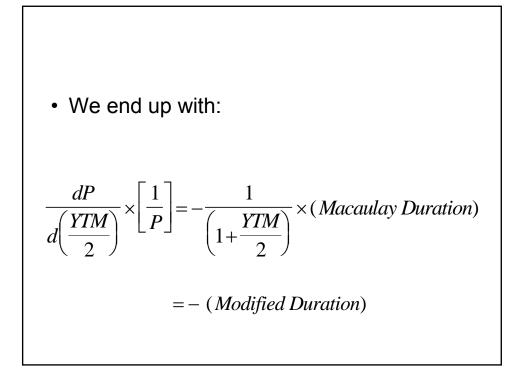
• To Compute Duration:

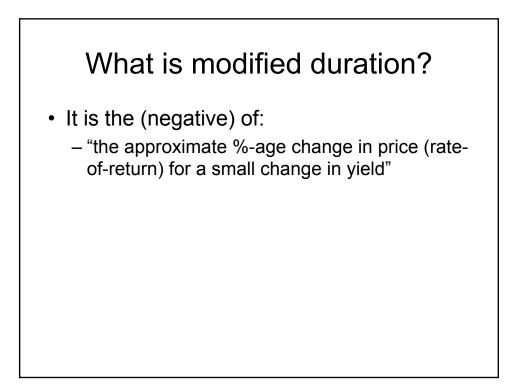
- First, write the bond pricing equation
- Second, take the derivative with respect to yield: this is the approximate dollar price change for a small change in yield!
- Third, collect terms
- Fourth, divide both sides by P: this is the approximate %-age price change for a small change in yield!
- This is the (negative of) modified duration!

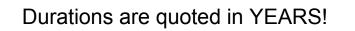


$$P = \frac{C}{\left(1 + \frac{y}{2}\right)} + \frac{C}{\left(1 + \frac{y}{2}\right)^{2}} + \frac{C}{\left(1 + \frac{y}{2}\right)^{3}} + \dots + \frac{C + M}{\left(1 + \frac{y}{2}\right)^{n}}$$
$$\frac{dP}{d\left(\frac{y}{2}\right)} = \frac{-C}{\left(1 + \frac{y}{2}\right)^{2}} + \frac{-2C}{\left(1 + \frac{y}{2}\right)^{3}} + \frac{-3C}{\left(1 + \frac{y}{2}\right)^{4}} + \dots + \frac{-n(C + M)}{\left(1 + \frac{y}{2}\right)^{n+1}}$$
$$= -\frac{1}{\left(1 + \frac{y}{2}\right)} \left[\frac{1C}{\left(1 + \frac{y}{2}\right)} + \frac{2C}{\left(1 + \frac{y}{2}\right)^{2}} + \frac{3C}{\left(1 + \frac{y}{2}\right)^{3}} + \dots + \frac{n(C + M)}{\left(1 + \frac{y}{2}\right)^{n}}\right]$$
November 7, 201





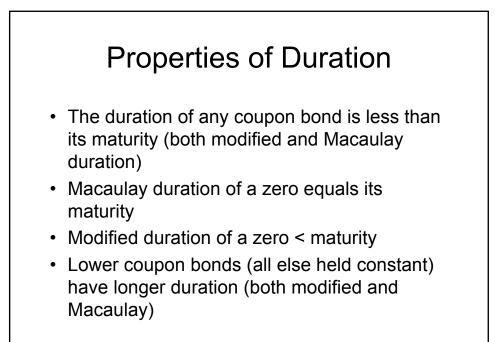


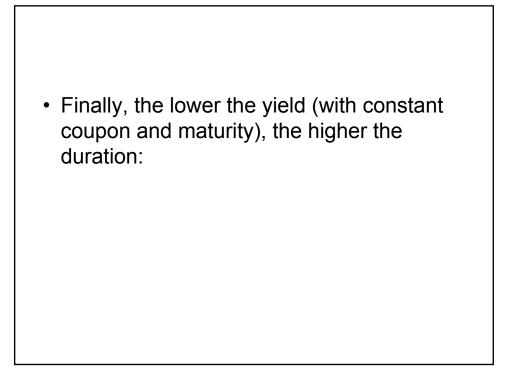


 So, the last step is to divide by the number of periods per year (usually 2 in bond markets):
Duration in years =

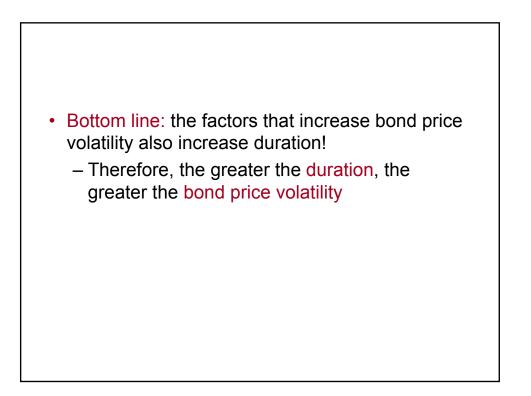
(Duration in periods) / (# periods per year)

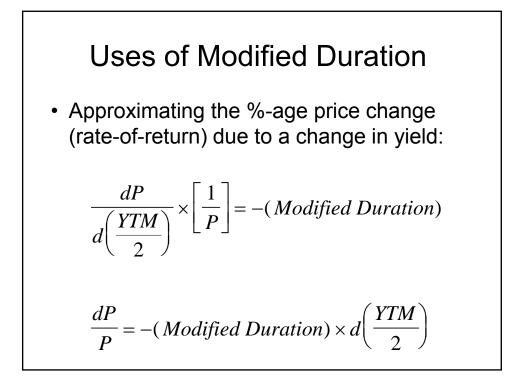
Example:			
<u>Bond</u>	<u>Macaulay</u> Duration (years)	<u>Modified</u> Duration (years)	
9%/5-year	4.13	3.96	
9%/25-year	10.33	9.88	
6%/5-year	4.35	4.16	
6%/25-year	11.10	10.62	
0%/5-year	5.00	4.78	
0%/25-year	25.00	23.92	
j e u			





A 9% coupon/25-year bond:				
<u>Yield (%/yr)</u> 7	<u>Modified</u> <u>Duration (years)</u> 11.21			
8	10.53			
11	8.70			
13	7.66			
14	7.21			





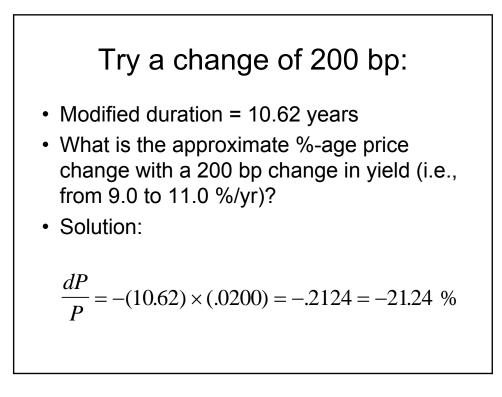
Example: A 25-yr, 6% bond yielding 9%

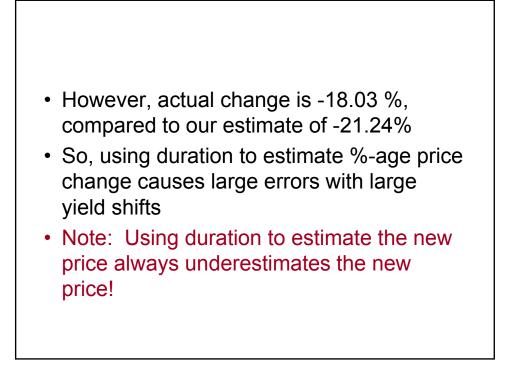
- Modified duration = 10.62 years
- What is the approximate %-age price change with a 10 bp change in yield (i.e., from 9.0 to 9.1%/yr)?
- Solution:

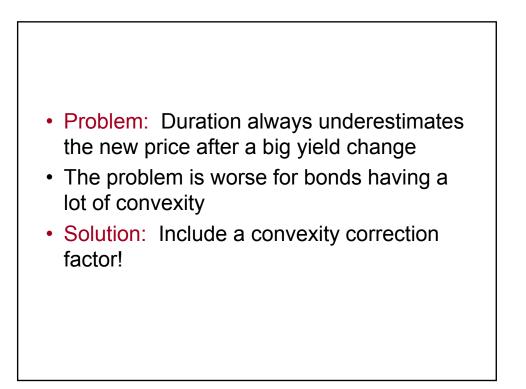
$$\frac{dP}{P} = -(10.62) \times (.0010) = -.01062 = -1.062 \ \%$$

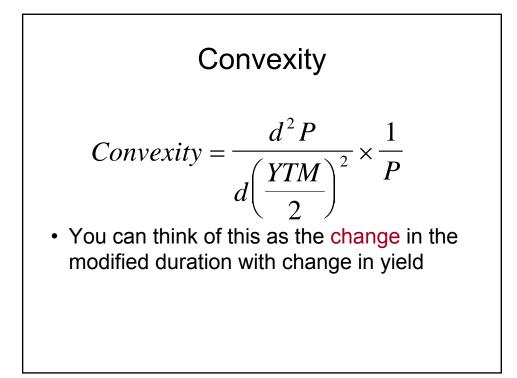
How good is this approximation?

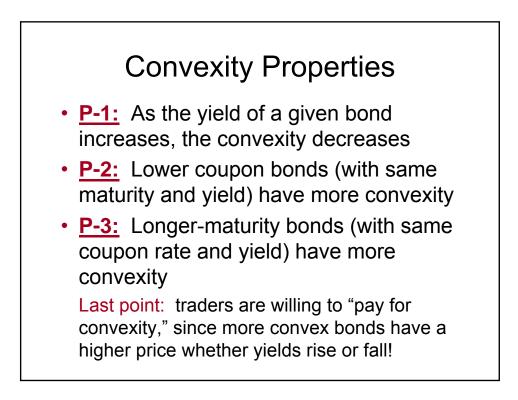
- Actual price at a yield of 9.1 is -1.05 % (you have to actually calculate the price at 9.1 to figure this out)
- So, the estimate (-1.06 %) is close to the actual (-1.05 %)
- The estimated %-age price change using duration is close when yield shifts are small

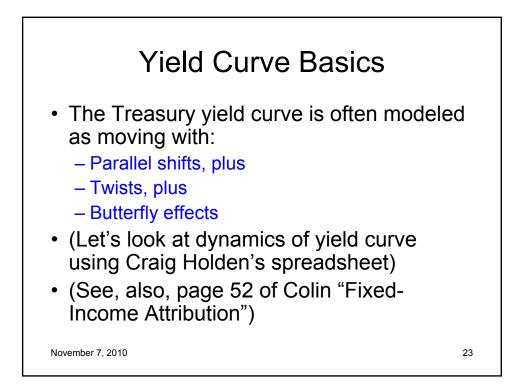


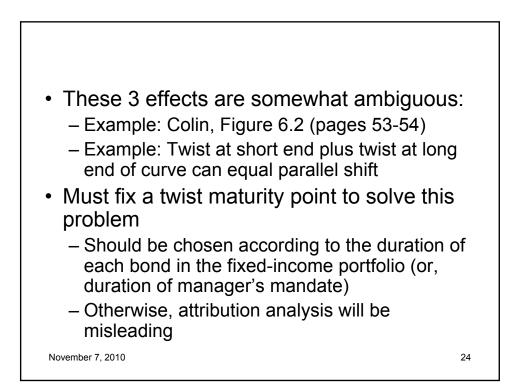


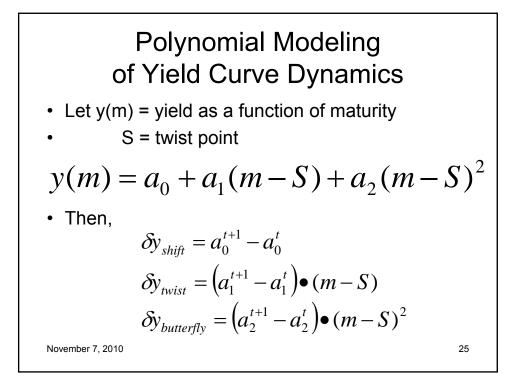


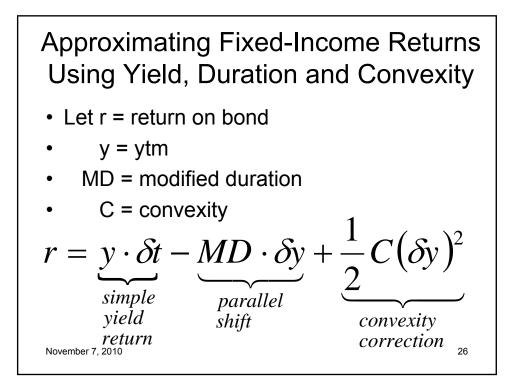


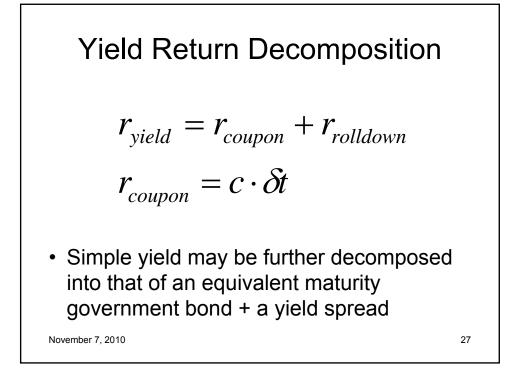


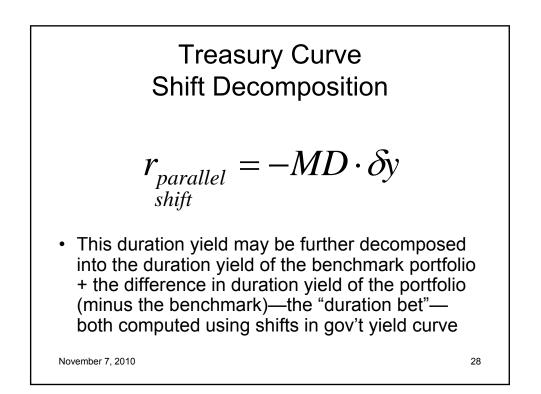


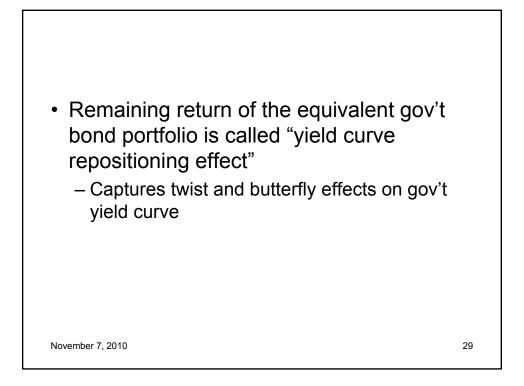


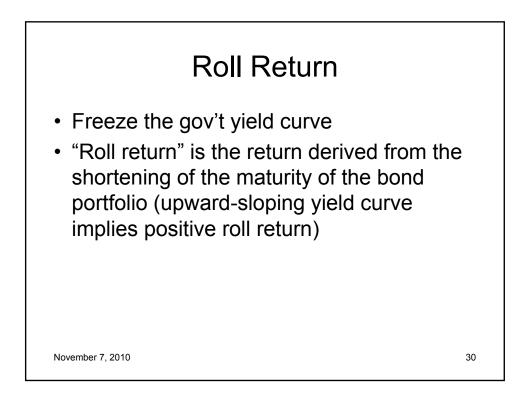


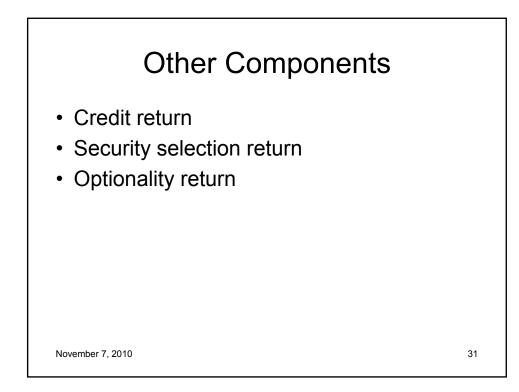


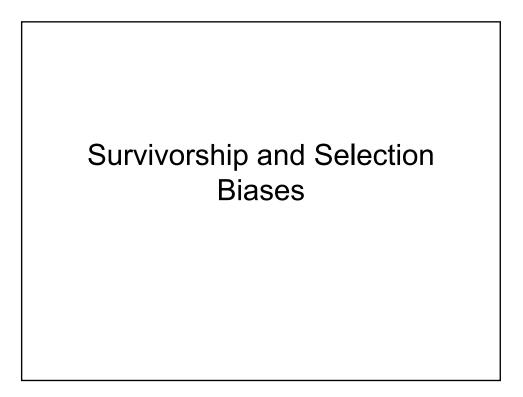


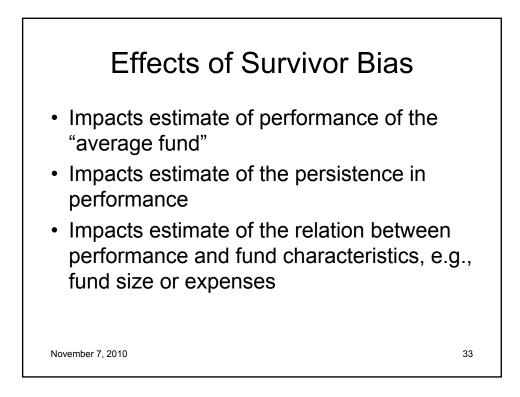


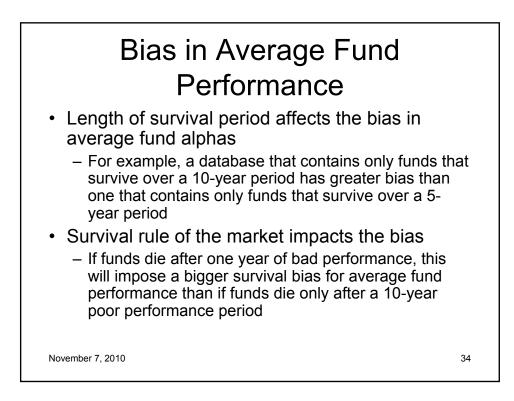


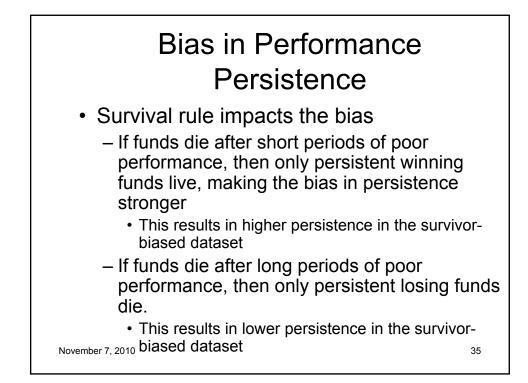












Bias in the Relation Between Performance and Fund Characteristics

- The bias will only occur for a fund characteristic that is correlated with survival
 - For instance, fund size, since small funds are more likely to die after poor performance
 - This will make small funds appear to outperform large funds in the survivor-biased dataset

November 7, 2010

